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1 Motivation

Stream processing frameworks were being traditionally built for Big-data use-cases. A common assumption for
these use-cases was centralised processing of all data, i.e., in the cloud datacenters. However, with the proliferation
of IoT devices, most of the data produced today are at the edge of the network. Also, these applications demand
very low latency. Hence, stream processing frameworks have to support such distributed systems by bringing
computation closer to the data sources [1].

However, the solution isn’t that simple. Devices at edge are constrained in resources. The application requirements
also change from time to time. A new data source could appear or an existing data source could move from one
location to another. Such scenarios demand a reconfiguration of the system and the application modules (henceforth
referred to as operators) need to moved from one location to another to accommodate the changing needs.

For stateful applications, the problem is even more complicated. Reconfiguration for a stateful operator includes
moving the accompanying state from one location to another. Since the data is continuously being processed and
that cannot be stopped or reduced, this movement of state must be done while ensuring data consistency.

Current state-of-the-art stream processing frameworks don’t have an optimum strategy for handling such recon-
figurations seamlessly. While many of the stream processing frameworks like Apache Flink [2], Apache Storm [3],
Spark Streaming [4] and Turbine [5] don’t have a seamless reconfiguration strategy at all and rely on stop-restart,
there are some others like StreamCloud [6], SEEP [7], IBM Streams [8] , FUGU [9, 10], Megaphone [11] and Rhino
[12] that pause the processing of data for a small period of time during the migration (Pause-Resume). While
better than Stop-Restart strategy, Pause-Resume strategy still causes a spike in the latency of data processing to
accommodate state migration. Hence, there is a need of Live Migration strategy. To best of our knowledge, only
one solution, Chronostream [13] proposes a live migration strategy. But, there are many issues with the strategy
like data consistency,

2 Idea

The main idea of the project revolves around creating a stream processing framework for managing stateful
stream applications. Inheriting the programming model from the research literature [14], the framework’s novel
contribution will be seamless reconfiguration and state migration. Then, the plan is to find a small benchmark
application to first test if the system actually works. Finally, an actual IoT benchmark like [15] can be used to
test the performance of the system.

The aims of the project are:

• First, to build a state management system that provides basic support to stateful applications.

• Second, design a basic partitioning strategy for indexing the state. This can be used later to move / distribute
some amount of state amongst the operators.

• Third, design a storage mechanism. The state cannot be stored in memory. So, it must be periodically
backed up in a persistent storage. This state’s backup can then be moved from one location to another
during reconfiguration.

• Fourth, design the actual reconfiguration mechanism. This will involve designing components for both backup
of state on original location and restore of state on new location. However, the restore mechanism should be
accompanied with a strategy that continues the processing of data all throughout this process.

• Fifth, conduct experimental evaluations using a IoT benchmark to show the performance of the system.
Ideally, the system should produce exactly same throughput and latency before, during and after a state
reconfiguration. This will prove that our system is seamless. Experiments should also ensure that the data
remains consistent before and after the reconfiguration.
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