This work is under review. Please do not redistribute this draft.

Falcon: Live Reconfiguration for Stateful Stream Processing on
the Edge

Pritish Mishra
University of Toronto
pritish@cs.toronto.edu

Myles Thiessen
University of Toronto
mthiessen@cs.toronto.edu

Oana Balmau
McGill University
oana.balmau@cs.mcgill.ca

ABSTRACT

Stream processing is an attractive paradigm for deploying appli-
cations in geo-distributed edge-cloud environments. The reverse
economics of scale of edge networks, as well as the movement of
data sources between edges, however, require the ability to dynam-
ically reconfigure application deployment to adapt to workload
variations and user mobility. Unfortunately, existing stream pro-
cessing engines are ill-suited for edge-cloud environments: they
either stop application processing while reconfiguration takes place
or require an expensive duplication of application state.

We propose Falcon, a new stream processing engine. At its core
lies a live key migration approach to allow reconfiguration to occur
with minimal disruption to processing, even across distant data-
centers. Falcon supports the reconfiguration of stateful operators
including different windowing approaches, as well as source mobil-
ity across different edge regions. It scales gracefully with network
latency, the number of datacenters, and the size and number of
keys. Our evaluation in geo-distributed edge-cloud deployments
shows that Falcon reduces the length of processing interruptions
and their impact on latency by 2 to 4 orders of magnitude compared
to the existing state-of-the-art frameworks such as Apache Flink,
Trisk, and Meces.

PVLDB Reference Format:

Pritish Mishra, Nelson Bore, Brian Ramprasad, Myles Thiessen, Moshe
Gabel, Alexandre da Silva Veith, Oana Balmau, and Eyal de Lara. Falcon:
Live Reconfiguration for Stateful Stream Processing on the Edge. PVLDB,
16(1): XXX-XXX, 2023.

doi: XX XX/XXX.XX

PVLDB Artifact Availability:

The source code, data and/or other artifacts could not yet be made available
during the paper submission due to the patenting process. We commit to
make them available after we apply for a provisional patent application.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

Nelson Bore
McGill University
nelson.bore@mail.mcgill.ca

Moshe Gabel
University of Toronto
mgabel@cs.toronto.edu

Brian Ramprasad
University of Toronto
brianr@cs.toronto.edu

Alexandre da Silva Veith
Nokia Bell Labs
alexandre.da_silva_veith@nokia-
bell-labs.com

Eyal de Lara
University of Toronto
delara@cs.toronto.edu

1 INTRODUCTION

Emerging mobile and edge applications (e.g., traffic monitoring [30],
autonomous driving [34], and augmented reality [46]) pose signifi-
cant cost, bandwidth, and latency constraints. These new applica-
tions produce large amounts of data from edge sensors and have
latency requirements in the range of a few tens of milliseconds,
with the added challenge of data source mobility. Cloud providers
are anticipating new applications’ needs by moving compute closer
to the data with a rollout of a geo-distributed hierarchical infrastruc-
ture, where progressively smaller datacenters are deployed closer
to the edge of the network near base stations. This hierarchy can
span multiple tiers on the path to the largest root datacenter. For
instance, Amazon provides such services via AWS Wavelength,
Outposts, and Local Zones [2], and Microsoft recently introduced
Azure Stack Edge [6].

Stream processing systems are an ideal candidate for hierar-
chical datacenter deployments. These frameworks (e.g., Flink [4],
Storm [5]) structure the application as a dataflow graph whose
vertices represent operators and edges represent the data streams
between operators [19] and have been successfully used in cloud en-
vironments for applications, such as data analytics, online maps, ads
serving, video streaming, and fraud detection [18, 24]. This works
well for the hierarchical setting, as processing data closer to where
it is created has the potential for significant bandwidth reduction,
order-of-magnitude lower latency, and better load balancing.

Stream processing in hierarchical datacenter deployments, how-
ever, has to address two new challenges: (1) the reverse economics
of scale of edge networks (i.e., smaller size of the edge datacenters
leads to higher per-unit costs) create a need for frequent operator
reconfiguration across the edge-cloud hierarchy; (2) the limited cov-
erage area of edge data centers (e.g., a city or neighborhood instead
of a county) requires accounting for the movement of data sources.

Figure 1 illustrates how the reverse economics of scale of edge
networks require frequent reconfiguration in an example real-time
traffic monitoring application consisting of an aggregation operator
(A) that aggregates information from images generated by motion-
activated street cameras, and a control operator (C) that analyzes the
resulting events to generate decisions directing the traffic. Figure 1a

https://doi.org/XX.XX/XXX.XX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

This work is under review. Please do not redistribute this draft.

> — SINK

Producer (Source) Aggregate Control

Cloud !
Datacenter

1

1

. 1

Region 1 Region|2 Region 3 1

Edge 1
Datacenters 1
| L}

[}

=~ Sl

N\ hY Py 1

1

= =

a) Low traffic scenario 1

b) High traffic scenario

Figure 1: State reconfiguration for a stream processing appli-
cation deployed in an edge-cloud environment.

shows that when car traffic is low, it is most beneficial to run
operators only in the cloud datacenter. The lower cost of computing
at the cloud datacenter compensates for the bandwidth cost of
transmitting raw images. Once traffic in Regions 1 and 3 increases
(Figure 1b), it becomes profitable to create additional instances
of operator A on edge nodes where vehicle traffic is high as the
bandwidth savings from processing camera data locally are higher
than the processing costs of running on the pricier edge resources
(compared to cloud). As shown in Figure 2, deploying this traffic
monitoring application by adaptively moving operators between
cloud and edge resources results in a lower cost than running
them solely on the cloud or the edge [39]. Thus, to optimize cost,
stream processing applications running on edge networks require
the ability to dynamically reconfigure application deployment with
minimal interruptions to running client applications, for instance,
caused by disruptions in tuple processing latency.

Unfortunately, the techniques used to reconfigure stream pro-
cessing applications in the cloud (i.e. full-restart [4], partial pause [27,
42], on-demand state transfer [26], and hot backups [25]) are inap-
propriate for reconfiguring applications deployed on edge networks.
These approaches use early binding designs where the socket con-
nections between all upstream and downstream operators must
be coordinated globally and re-established after reconfiguration.
While these designs are appropriate for the cloud where latency is
low, our evaluation shows that on hierarchical cloud-edge networks
these techniques result in disruptions that last tens of seconds, and
latency peaks that are 3-4 orders of magnitude higher than the
steady state latency. Moreover, none of the cloud frameworks ad-
dress source mobility between edges, as all the data is processed in
a single datacenter.

Recently, our prior work, Shepherd [39] introduced an alterna-
tive approach that supports dynamic reconfiguration of stateless
operators on edge networks. Shepherd uses a network of software
routers to transfer data tuples between operators and implements
a late binding approach to routing that enables dynamic recon-
figuration of stateless operator replicas with minimal application
disruption. Shepherd, however, does not support stateful operators
(such as the aggregation operator in the above vehicle monitoring
example) and does not support data source mobility.

We present Falcon, a new stream processing system designed for
stateful applications running on the hierarchical edge-cloud. Falcon
builds on Shepherd’s approach to tuple routing, but applies it to
the more challenging problem of stateful operator reconfiguration,
which requires maintaining state correctness [45]. To achieve this,

—«=Cloud Only --+-Edge Only —s—Adaptive Edge J

o P

0 100 200 300 400 500 600
Execution Time (minutes)

Figure 2: Cost of traffic monitoring application when de-
ployed on cloud only (dashed), edge only (dotted), or using
an adaptive strategy (solid) that reconfigures the application
operators. Figure reproduced from [39].

Monthly Cost ($)

the state needs to be migrated between operator instances, while
tuples continue to be processed in the same order as they arrive,
and no tuple is processed more than once. Reconfiguration must
also ensure that windows are closed in exactly the same manner
at the new operator instance. Falcon preserves the semantics of
in-order and exactly-once processing, supports count and event-
based window states, which are commonly used by applications
today [40], and supports data source mobility.

Falcon uses a novel live key migration protocol to move the state
between nodes. Falcon relies on three techniques that work together
to achieve seamless live migration. Dual routing creates a duplicate
data flow that routes tuples to both the source and destination
instances. This technique allows Falcon to mask the latency of state
transfer to the new operator by continuing to run the application on
the original instance. Marker-based synchronization injects special
marker tuples into the live data stream to demarcate the phases of
the protocol. This avoids the need for lengthy message exchanges
to coordinate between source and destination which would incur
latency spikes due to network delays. Lastly, emission filters, allow
an operator instance to synchronize state by processing buffered
tuples without emitting output, thus avoiding the need to later
de-duplicate emitted tuples.

We evaluate Falcon on a geo-distributed edge-cloud network
of AWS datacenters and compare it against state-of-the-art frame-
works for stateful streaming: Flink [21], Trisk [36] and Meces [26].
During reconfiguration, Falcon achieves a disruption lasting 10-15
milliseconds, which is lower than the round-trip time to the root dat-
acenter. In contrast, disruption in state-of-the-art frameworks goes
up to several tens of seconds. Moreover, Falcon reduces the peak
latency compared to steady state by up to 4 orders of magnitude.
Falcon’s latency peak during reconfiguration is 40-45 milliseconds,
compared to several tens of seconds for its competitors.

In summary, the paper makes the following contributions:

(1) A study of the limitations of existing stream processing frame-
works when deployed in a hierarchical edge-cloud environment,
centered on state management during operator reconfiguration.

(2) The design and implementation of Falcon, a new open-source
stream processing framework designed for the hierarchical
edge-cloud. Falcon is the first system to support low-latency
state migration during operator reconfiguration and source mo-
bility. We plan to open-source Falcon upon paper publication.

(3) An experimental evaluation on geo-distributed edge-cloud data-
centers, showing that Falcon reduces processing disruption and
peak latency during reconfiguration by 2-4 orders-of-magnitude
compared to the state-of-the-art frameworks.

This work is under review. Please do not redistribute this draft.

2 BACKGROUND AND MOTIVATION

Stream processing frameworks use a dataflow execution model that
represents an application as a directed acyclic graph (DAG) whose
vertices represent operators and edges represent the data streams
between operators. Operators can be sources that ingest data into
the stream, sinks that collect the results, or processing functions that
do transformations.

Stateful operators (e.g., windows, aggregates, reductions) usually
maintain the computation variables (e.g., counters, windows, ML
models) in the form of an internal state, while stateless operators
(e.g., filter, map) do not have such state. Windows are common state-
ful operators, where the state stored by each key holds a collection
of objects. Closing a window periodically releases this collection,
aggregating the tuples. The size of the migrated state can be large if
the windowing duration is long, if there are multiple open windows,
or if the window elements are large.

Users can specify the operators and how data flows between
them using an abstraction called a logical plan [31]. During appli-
cation deployment, users (or a placement component) also define a
physical plan, which specifies the instances that must be spawned
for each logical operator and on which computing node to place
each operator instance. A reconfiguration plan introduces modifi-
cations to the physical plan by changing the mapping of operator
instances (and their states) across computing nodes, for example,
scaling to a different number of replicas, or moving an instance
to a different node. In this work, we focus on modifications to the
physical plan. Falcon assumes that physical plans are valid imple-
mentations of the logical plan.

2.1 State in Stream Processing Frameworks

Stream processing frameworks allow the splitting of the data stream
into multiple sub-streams based on keys that represent a unique data
attribute that can be specified by the developer. The operator state
is partitioned and scoped to these keys. A fundamental assumption
of the stateful stream processing model is that a given key can be
mapped to a single operator instance. This operator instance is
solely responsible for processing tuples belonging to this key and
modifying the corresponding state of the key.

Reconfiguration of stateful operators requires migrating the state
stored by these keys to a different operator instance at the new
location. The data flow belonging to these keys must be switched
to the new operator instance and subsequent tuples (including the
ones in-flight) need to be processed at the new location.

A key requirement in the reconfiguration process is maintaining
state correctness [45]. The state stored by the keys after the recon-
figuration must be equivalent to what it would have been had the
reconfiguration never happened. To achieve this, tuples must be
processed in the same order as they arrive and no tuple is processed
more than once. Reconfiguration must also ensure that windows
are closed in exactly the same manner at the new operator instance.

2.2 Reconfiguration in the Edge

Figure 3 demonstrates the application performance when using
current stream processing frameworks to reconfigure deployment
of the traffic monitoring application (Figure 1) where processing of
data from Region 1 is moved from A; in the cloud to a new A3 on the
edge node, for example as a result of a 5G MEC notification [11, 49].

104 Flink
=y ——Trisk
2 —=—Meces
w -~ Falcon-HB Peak Latency
3 itter
E1w0 ——Falcon J
>
1}
e
2
©
102
Ch10 AR |
) . Aocgshd A AVA
o
Disruption Duration
T T T T T T
45 50 55 60 65 70
Time (s)

Figure 3: P99 latency during reconfiguration for a two-tier
(edge-cloud) infrastructure deployment. The dashed black
line indicates the reconfiguration trigger.

State-of-the-art systems use one of the following strategies when
handling reconfiguration: full-restart (for Flink), partial-pause (for
Trisk, Meces), or hot backups (for Falcon-HB). Figure 3 shows the
behavior of systems implementing these approaches during recon-
figuration, as well as the behavior of Falcon, our proposed solution.

Apache Flink [4] uses a full-restart approach: it stops the entire
application, migrates the affected operators and their state, and
then resumes the application. This leads to a substantial stoppage
in application processing, as shown by the spike in application
latency after the reconfiguration is triggered. Since network latency
causes the application to restart on the cloud earlier than the edge
datacenter, we see a double spike in Flink’s performance.

Trisk [36] implements a partial-pause approach [27, 42] where
only the processing of keys affected by migration is paused. While
a step forward, we observe it still requires stopping the parts of
the application that are affected by the reconfiguration, leading to
latency peaks in the order of a few seconds. Meces [26] uses on-
demand state transfer, an optimization of the partial-pause approach
that downloads the state on-demand and processes keys in the
background. Meces reduces the latency spike to a few hundred
milliseconds but does not improve the disruption duration.

Rhino [25] is an example of the hot backups approach that main-
tains up-to-date replicas of the operator state at other nodes, and
switches processing between backups as needed. Rhino still incurs
stoppage while migrating the state of keys changed between the last
replication and the trigger of reconfiguration. Moreover, maintain-
ing hot backups for each operator is infeasible in large deployments
since resources are expensive. Since Rhino is not open-source, we
implement its hot backup strategy on top of Falcon. This Falcon-HB
version benefits from the late-binding design (Section 3.3), which
explains the low disruption duration.

Cloud-based systems like Flink, Trisk, and Meces incur higher
latency after reconfiguration (at the 67 seconds mark) because they
deploy a single message broker in the cloud to which all sources
connect. Consequently, tuples generated at the edge are triangularly
routed through the cloud to be processed back at the edge (Region
1). In cloud deployments, this solution is not detrimental, because
all compute nodes are connected via low latency links. However,
in an edge-cloud deployment, reconfiguration leads to an increase
in latency which is proportional to the depth of the datacenter
hierarchy. In contrast, Falcon uses a hierarchy of brokers which
allows localized processing of tuples, and thus application latency
remains unchanged for Falcon (and Falcon-HB).

This work is under review. Please do not redistribute this draft.

Finally, Falcon reduces the peak latency by 1 order of magnitude
compared to Meces. Moreover, the disruption duration is decreased
to 10-15 milliseconds. Our analysis shows that existing techniques
for stateful reconfiguration in cloud deployments fall short in edge-
cloud environments. Disruption incurred by these techniques is not
tolerable for edge applications requiring real-time processing. For
instance, a disruption of a few seconds for the traffic monitoring
application could lead to a delay in detecting an increase in traffic
leading to more congestion due to a missed opportunity to redirect
traffic. Similarly, a spike of hundreds of milliseconds could lead
to a delay in detecting accidents or missing toll notifications for
applications used in the Linear Road benchmark [20]. Given the
poor reconfiguration performance, we conclude that existing stream
processing frameworks cannot efficiently support source mobility,
which is a crucial requirement for edge applications.

3 FALCON

Falcon is a stream processing framework that supports efficient
reconfiguration in hierarchical edge-cloud environments. Given
a reconfiguration plan that switches a running application from
one physical plan to another, Falcon implements it while avoiding
disruptions to the application processing. In addition, Falcon au-
tomatically detects and moves tuple processing to handle moving
data sources.

Falcon’s key design goals are minimizing processing interrup-
tions during reconfiguration, avoiding message-based coordination
between source and destination instances, supporting source mo-
bility, and supporting a wide array of reconfiguration operations.
Falcon maintains strict in-order and exactly-once processing guar-
antees. We do, however, make one important assumption: operators
are deterministic, i.e., replay of a tuple after restoring the operator
state from a checkpoint results in the same state.

3.1 System Overview

Falcon is designed for hierarchical datacenter deployments organ-
ised like a tree, where the root node is a cloud datacenter and the
leaf nodes are edge datacenters located in close proximity to data
sources. Additional datacenter nodes can form the intermediate
tiers between the root and the leaves.

Deployment on the edge-cloud. Falcon’s design assumes that
the root datacenter (the cloud) has a global view of the deployed
operator instances, along with their keyspaces. In addition, the root
datacenter has an instance of each operator in the application DAG
and is thus capable of processing tuples that were not processed
at lower levels of the hierarchy. The root datacenter also manages
reconfiguration by redeploying operator instances (replicas of the
homologous operators in the cloud) following a reconfiguration
plan or detection of source mobility. In the rest of the datacenter
hierarchy (i.e., intermediate nodes, and leaves), Falcon installs late-
binding routers. The routers send incoming tuples to the operator
instance on the current node if possible, or send it up to the parent
datacenter.

Keyed state overview. Falcon allows routing rules at both individ-
ual key and key-range granularity levels. In contrast to only the
key-range granularity supported by other frameworks [21, 26, 36],
Falcon’s design allows handpicking individual keys for migration
to better support source mobility without sacrificing scalability.

System design. Falcon is composed of three subsystems: the Job
Manager, the Routers and the Workers.

e The job Manager running at the root of the hierarchy manages
applications and monitors deployed operators. In particular, it
manages reconfiguration by redeploying the operators following
a reconfiguration plan received from the client (Sections 3.2, 3.4
and 3.5), and it manages source mobility (Section 3.6).

e The Routers are deployed at each datacenter node in the edge-
cloud hierarchy. Routers manage the flow of tuples across op-
erators and datacenters. Data sources connect to the nearest
datacenter and tuples generated by them first arrive at a com-
mon datacenter queue. The local router either sends tuples to one
of the operator queues within the datacenter or forwards them to
the datacenter queue of the parent datacenter (Section 3.3).

e Several Workers can be deployed at each datacenter node in the
edge-cloud hierarchy. Each Worker can serve multiple operator
instances (e.g., one per core), assigned by the Job Manager. Each
operator instance maintains an operator process, a state manager,
and an I/O port implemented as a ZeroMQ socket [16]. The
operator process reads tuples from its operator queue, updates
the state in memory, and writes output using the I/O port. To
maintain state, each datacenter node has a replica of a distributed
key-value store, which Workers share.

3.2 Keyed State and Windows

State in Falcon is partitioned by keys, a common approach for
stateful operators in stream processing engines [43]. To preserve
correct processing semantics, an instance of a stateful operator can
only write to the keys it controls, and must not mix state from
different keys. For example, an operator A maintaining different
counts for keys X and Y may not emit the sum of these counts,
since Falcon or the client may choose to move the processing of Y
keys to a different machine. Instead, the counts emitted by A must
be processed by a subsequent operator B to compute the sum.

Falcon allows an application to seamlessly switch between phys-
ical plans during its runtime. One assumption in Falcon’s design
is that tuples flow only up the hierarchy and a valid physical plan
must ensure that the operator instance responsible for processing a
key is located at a node that is parent to all the producers generating
tuples for this key. State in Falcon is managed as follows.

Falcon’s Job Manager gives each operator in the logical plan its
own keyspace and mapping function, which assigns a key to each
incoming tuple (based on its contents, the originating source, a
bucketing function, etc.). The logical plan specifies which operator
instance processes which keys, allowing operations such as splitting
the stream to multiple streams by a key (“count different types of
objects”) and combining them (“sum partial counts”). Each logical
plan can then be translated to one of many valid physical plans that
specify where the processing of each key is deployed.

Falcon also adds an implicit key * to each keyspace, which serves
as a catch-all for all tuples whose key was not assigned to an opera-
tor instance for processing. In Falcon, * keys for each operator are
processed at the root node (the cloud). An important benefit of the
catch-all key is being able to process new keys which are unknown
to the application (e.g., if a new source is added) at the root node.

This work is under review. Please do not redistribute this draft.

Managing Windows. Falcon supports tumbling, sliding, and event-
based windows. Tumbling and sliding windows are handled by stor-
ing tuples that fall in the window as part of the operator state, with
separate windows for separate keys. Once a window is closed, its
tuples are handed over to the operator for processing and the win-
dow state is cleared (incremental aggregation can be implemented
similarly). Event-based windows are closed once either tuples or
heartbeat watermarks are received from all sources whose times-
tamp exceeds the window closing time, or when a configurable
timeout is exceeded, similarly to Flink [21]. During the key migra-
tion, all open windows for the key are seamlessly migrated as part
of the operator state.

3.3 Tuple Routing

Falcon generalizes the late-binding routing design proposed in prior
work on stateless stream processing [39]. In existing designs, the
routers inspect each arriving tuple. If there is a matching opera-
tor in the datacenter, tuples are processed locally; otherwise, the
router forwards the tuple to the parent node. Late-binding allows
for independent deployment of an operator without knowing the
location of its upstream or downstream operators.

We generalize the design above to handle keyed state and win-
dows both crucial for modern stream processing applications [40].
Seamless state migration is also beneficial for environments where
source mobility is common. Falcon extends late-binding tuple rout-
ing as follows.

The Falcon Routers make decisions based on three tuple at-
tributes: application ID, operator type and key. Figure 4 demon-
strates routing in a two-operator application (source —» A — C)
deployed in an edge-cloud environment. Tuples originate from ve-
hicles and follow three possible paths that exemplify an application
deployed in such an environment. Each such flow is illustrated in a
different color:

o Orange flow (solid): (D Vehicle 1 connects to the datacenter queue
in edgel datacenter and emits tuples of type meant for
operator A with key "car". (@ The router in the edgel datacenter
routes|A,car| tuples to the local operator Acar. 3 Acar emits tuples
for operator C with key "car". Since no operator C exists
locally, the router forwards them to the datacenter queue in the
parent datacenter. (@ Router in the parent datacenter routes
to the local operator C, which accepts all keys.

e Pink flow (dashed): (3 Vehicle 2 connects to the datacenter queue
in edgel datacenter and emits tuples meant for operator
A with key "van". (® Since no operator A processing key "van"
exist locally, the router forwards them to the datacenter queue
in parent datacenter. (7) tuples are routed to local opera-
tor Ayan. ® Avan emits tuples [Cyvan], which are routed to local
operator C which accepts all keys.

o Green flow (dotted): (9)[Ayvan| tuples emitted by vehicle 3 are
routed to the parent datacenter since no local operator A exists
and @ are handled by Ayap there.

3.4 The Migrate Primitive
Falcon offers a single simple primitive that supports a wide range
of reconfiguration operations:
Migrate(K,S,D): migrate keyset (K) from source
instance (S) to destination instance (D).

Parent Datacenter

Operator queue

“operator Quee T sl {Can]
C,car @/;_ ;_,,
Seell
S)
Edgel Datacenter 5 Edge2 Datacenter
Prae C C,
’ Operator Queue car
® L+ .
\\ A,car @ Datacenter Queue
~_ Datacenter Queue
Qe ®

Vehicle 1 (car) Vehicle 2 (van) Vehic?e 3 (van)
Figure 4: Example of tuple routing in Falcon. Operator in-
stances Acar and Ayan process tuples of car and van keys,
while operator instance C. processes for all keys.

DC1 DC1 DC1

Keyspace

7

Migrate (XY) | Migrate () 4 Migrate (2) ,~ '\\ Migrate (2)
fromA;to Ay 1 from A, to Ay : from A; to A;/ \\from Azto Ay
DC2 v DC2 : DC2 > pa3

Keyspace [Keyspace| [Keyspace]

z LY | Lz |

a) Move Down b) Split Up c) Split Horizontal

Figure 5: Example reconfiguration plans that can be com-
posed using Falcon’s Migrate primitive.

The Migrate primitive migrates keys belonging to keyset K from
the operator instance currently processing it (source) to another
operator instance (destination). If the destination operator instance
does not already exist, it is created during the reconfiguration pro-
cess. If the source instance is left with zero keys after reconfigura-
tion, this instance will be deleted.

Using the Migrate primitive, Falcon supports a wide range of
reconfigurations, which are crucial to source mobility: Moving an
operator instance from one datacenter to another is implemented
by migrating all the keys in the source to the destination (Figure
5a). Splitting a part of an instance, for example, due to user mobility
or to improve performance, is implemented by migrating only the
relevant keys (Figure 5b). Splitting a keyspace horizontally to a
sibling edge is implemented as a migrate up to the parent datacenter
followed by a migrate down to the child (Figure 5¢). Falcon also
allows merging of multiple instances into one instance by migrating
keys from multiple sources into a single destination and supports
key redistribution between two instances running on, say cloud and
edge, with a combination of migrate up and migrate down. Such
reconfiguration operations that require multiple migrations can be
run in parallel if there are no keys common between the operations.

3.5 The Live Key Migration Protocol

The live key migration protocol is one of the two core mechanisms
of Falcon, together with the source mobility protocol. Live key
migration implements the Migrate primitive (Section 3.4). Intu-
itively, the idea is to continue the tuple processing on the source
instance while the destination instance transfers the state. Once
the transfer completes, these tuples are replayed at the destination
to synchronize the state.

To achieve seamless live migration, Falcon relies on three tech-
niques that work together. Dual routing creates a duplicate data

This work is under review. Please do not redistribute this draft.

2 ‘ : : : : : ‘ : : : : : B tuples € K
S 1B 3 4 HE | : : & B mo | M| 12 a3 ‘ tuples €S
. ‘ 1 ‘ : : ; > uples
E ! L 1 | T T ‘ T T 1 1 : tuples € D
figure (a) create inject figure (b) process process figure (c) inject killdual process process figure (d) uples
dual route reconfig Rg Rp terminate route Ts Tp |:| processed
markers markers X
0 ignored
% keyspace: D U K
2 g keyspace: D keyspace: D © emit filter: K < keyspace: D U K
® D '8 U V)
£58 O N
keyspace: S U K © keyspace: SUK keyspace: S U K n’;it%"t:te‘; keyspace: S
- ' |
£ | SyEBaETa) |MRIEBS Oirey | SRR
g_ ackup
k=B
88 cBal3m1] RJ[RJ| B 6B 4] 10 @ 8] [r,/[R/] 13|12 M[1,)[7] 100 8]

datacenter queue datacenter queue

(a) Before reconfiguration (b) Dual routing of K and

injection of reconfig markers

(c) Processing of reconfig markers

datacenter queue datacenter queue

(d) After processing terminate
markers and killing dual route

Figure 6: Reconfiguration steps when migrating the key K from operator instance Ag in a child datacenter to instance Ap in a
parent datacenter. Annotated timeline of arriving tuples indicates the reconfiguration steps and each figure presents a snapshot
of the system at a particular point of the timeline. See Section 3.5 for more details.

flow that routes tuples to both the source and destination instances.
Marker-based synchronization injects special marker tuples (recon-
fig and termination markers) into the datacenter queue to demarcate
the phases of the protocol. This avoids the need for lengthy message
exchange to coordinate between source and destination that would
incur latency spikes due to network delays (Section 4.4). Lastly,
emission filters, allow an operator instance to synchronize state by
processing buffered tuples without emitting output, thus avoiding
the need to later de-duplicate emitted tuples.

Protocol Steps. Figure 6 shows the steps of the protocol, which
we next discuss in detail. Consider a Split Up operation (Figure 5b)
composed using our migrate primitive - Migrate K from Ag to Ap,
where a set of keys K need to be migrated from source instance
Ag executing in a child datacenter to a destination instance Ap
executing in a parent datacenter.

Phase 0 (Before Reconfiguration): In the initial deployment,
source instance Ag processes tuples belonging to keyset S U K. As
shown in Figure 6a, tuples 1 and 2 belonging to keyset S and K
respectively arriving at the datacenter queue of DC2 are forwarded
to the operator queue of Ag. Similarly, tuple 3 belonging to keyset
D is forwarded to the parent datacenter DC1 to be processed by
destination instance Ap. Also, note that each operator instance has
a keyspace and processes a tuple only if it belongs to a key that is
present in its keyspace (we will see its importance in Phase 1).

Phase 1 (Create Dual Route): Once the reconfiguration is
triggered, the Router begins dual routing where tuples belonging to
keyset K are sent to both the source and destination instances. To
achieve this, the system adds K to the routing rule of the destination
instance. As shown in Figure 6b, routing of Ap is now modified
from D to D U K, while the routing rule of Ag remains as S U K.
Hence, tuples 5 and 7 of keyset K arriving after the creation of dual-
route are routed to both Ag and Ap. Note that at this stage, these
tuples are ignored at the destination instance since its keyspace is
still D rather than D U K. This prevents the dual-routed tuples from
being processed twice.

Phase 2 (Inject Reconfig Markers): Inmediately after creating
the dual route, Falcon injects two reconfig markers, Rs and Rp, to
demarcate the start of the state transfer phase (Phase 3). To avoid
pausing the operator processing queue, Falcon injects markers into
the datacenter queue of the child datacenter (DC2 in Figure 6b). Rg
will then be routed to the source instance and Rp to the destination
instance.

Phase 3 (State Transfer): Upon processing Rg, the source in-
stance Ag creates an on-demand checkpoint by copying the current
state of keyset K from memory to the local persistent storage. This
on-demand checkpoint also copies all the K tuples that had arrived
at Ag between the last periodic checkpoint and the reconfig marker,
Rs to allow for tuple replay later at the destination.

Upon processing Rp, the destination instance Ap pauses output
for tuples belonging to K, adds K to its keyspace and triggers restore,
i.e., download of K’s state from the source instance. During the
restore, K tuples are still being processed in parallel due to dual-
routing. For example, tuple 9 belonging to K that arrives during
restore is processed by Ag and is buffered by Ap. Once restore is
complete, Ap starts processing the buffered tuples including the
ones downloaded from the source instance during restore. However,
this processing is done solely to synchronise the state and to avoid
processing tuples twice, we enable an emit filter on Ap, which
prevents output when processing buffered tuples.

Phase 4 (Inject Termination Markers): Since the destination
instance needs some time to clear the backlog of buffered tuples,
we continue the dual routing even after restore. Once the backlog
falls below a threshold (which depends on the tuple arrival rate),
the router injects two termination markers, Ts and Tp to trigger
the end of the reconfiguration process.

Phase 5 (Killing Dual Route): Immediately after injecting
the termination markers, Falcon kills the dual route by deleting K
from the routing rule of the source instance Ag. This means tuples
belonging to K will now be routed only to the destination instance
Ap. In our example, the routing of Ag is now modified from S U K

This work is under review. Please do not redistribute this draft.

to S. Since the routing rule of Ap remains as D U K, tuples of K
arriving after killing of dual-route will be routed only to Ap.

Phase 6 (Terminate Reconfiguration): Upon processing the
termination marker Tg, the source instance removes K from its
keyspace. Hence, tuples belonging to K that arrive between Phases
4 and 5 (e.g., tuple 11) will only be processed by the destination
instance and not by the source instance. On processing the termina-
tion marker Tp, the destination instance disables the emit filter and
resumes emitting output for tuples belonging to K. Thus, tuples
arriving after Phase 4 are processed solely by Ap and their results
are emitted.

Before emitting the results of tuples arriving after the termina-
tion marker Tp (e.g., tuple 11), the destination instance Ap waits
for an acknowledgment from the source Ag confirming that it has
processed its own termination marker Tg. This prevents a corner
case where Ap would emit output of new tuples (e.g. tuple 11) out
of order, before a slower Ag has processed Ts and any preceding
tuples (e.g., tuple 9).

Our protocol is generic: it supports all reconfiguration actions
(Figure 5) and is exactly the same for both upward and downward
directions. The dual routing design ensures that there are minimal
delays in the processing of tuples belonging to K. The only break in
processing is waiting for the acknowledgment from the source to
the destination instance which is approximately half the round trip
network latency. This is necessary to maintain the strict guarantees
of in-order tuple processing.

When choosing an operator instance for the migrated key in the
destination datacenter, it is important to select an instance with
sufficient spare capacity for processing of the keys being migrated.
This also ensures that it can complete tuple replay and catch up
to the source instance. If no existing instance has sufficient spare
capacity, it is straightforward to spin up a new operator instance for
the migrated keys since states are not shared and the protocol en-
sures starting a new instance does not incur processing disruptions.
(Note that this work focuses on the mechanism for live migration.
Mechanisms for data center capacity management or for selecting
which keys to migrate are beyond the scope of this work.)

State correctness. Falcon guarantees correctness by preserving: (1)
in-order processing of tuples, and (2) exactly-once processing of
tuples. Our migration protocol ensures these properties as follows:

e During reconfiguration (Phases 1-5), tuples are routed to both
source and destination instances. These tuples are processed and
their results are emitted at the source instance. The destination
instance only processes these tuples and doesn’t emit the results.
By not emitting output tuples at the destination, tuples emitted
by the migrated key during Phases 1-5 are only seen once by the
downstream operators. This prevents duplicate tuple processing.
In addition, our fault-tolerance mechanism prevents the dropping
of any tuples. Thus, exactly-once processing is maintained.

e For in-order processing, Falcon ensures tuples arriving after re-
configuration (Phase 6) are processed at the destination instance
only after tuples that arrived during reconfiguration (being pro-
cessed at the source instance). This is achieved in Phase 6 by
making the destination instance wait until the terminate marker
has been processed and emitted by the source instance.

e In addition, Falcon injects the two sets of markers that indi-
cate start and end of reconfiguration in a single queue at the
downstream data center and then forwards these markers to
the upstreams. This ensures that both source and destination
instances have the same perception of tuples arriving before and
after a marker.

In our experiments (Section 4.2), we evaluated the correctness for

operator migration using a deterministic dataset and ran experi-

ments with and without reconfiguration. We verified that the state
was identical in both experiments.

3.6 The Source Mobility Protocol

The second core mechanism of Falcon is its source mobility protocol,
accounting for the common scenario where data sources move
across edge nodes. This protocol involves two steps: 1) switching
the network connection between edge routers, 2) reconfiguring the
stream processing application.

Router switchover. Falcon registers all routers deployed on the
edge nodes, including their IP addresses, using the Edge Platform
Application Enablement in the ETSI MEC [7]. A data source (e.g., a
car, or other mobile device) uses the device application interface
to retrieve the Falcon router IP address to connect. When the data
source moves from edge A to edge B, MEC sends a notification
to the data source (using device application assisted user context
transfer in the MEC standard [11]). The notification contains com-
munication information, such as the IP address of the edge B router.
The data source then closes its connection to the edge A router and
opens a new connection to the edge B router for service continuity.

Application reconfiguration. Consider a mobile source that pro-
duces tuples with key P coming into an operator A, as shown in
Figure 7a. These tuples are processed by the operator instance A;
located on edge 1. Falcon maintains a global node-key map at the
root node (the cloud) that stores all operator instances and their
assigned keys (top of Figure 7). When the data source moves from
edge 1 to edge 2 @, Ac detects that the source has moved since it
has received P tuple which is already mapped to a different operator
instance, A; @ and it triggers a migration of the key P from A; to
Ac @. For scaling to an N-level topology, this global mapping on
the cloud can be extended to a hierarchical mapping where parents
are only aware of the key spaces of their direct children.

To achieve seamless reconfiguration, Falcon must continue pro-
cessing of P tuples during migration. This is challenging since P
tuples now arrive at edge 2, yet their processing is done at A1 on
edge 1. To address this, Falcon uses the dual routing mechanism
(Section 3.5, Phase 2) to forward P tuples arriving at C to A1 @ while
also collecting them at Ac. This is same as the usual live migra-
tion protocol, except that the tuples are routed down the hierarchy
rather than up as usual. A; continues to process incoming P tuples,
while Ac replays them @, while the state of P is migrated from A;
to Ac @. Once the migration is completed, P tuples arriving at the
cloud node are processed by Ac @. To avoid unnecessary migra-
tions during continued movement, Falcon migrates the processing
of P from Ac to Ay (Figure 7e) only if the data source remains
connected to edge 2 for a configurable minimum duration (default:
5 seconds). Note that this design can easily be extended if the edge
nodes - A; and A have a direct point-to-point connection.

This work is under review. Please do not redistribute this draft.

Node | Keys Node | Keys
A L A b
Node-key map: c <
A, P A, P
AZ AZ

@ P tuples

detected in Ac

@

e Trigger

migration of P

Cloud (C)
Datacenter:
from A to A.)/
%
Edge (1,2) N
o (&) ()] () [
ry

A

’

— tu‘ple péth GECT— @ source of P [31-:%0
- migration carP moves to edge 2
=) source
mobility (a) Initial deployment (b) Mobility detection

@ P tuples
0 Dual |\ Ac now processed

route P

7
/
tuple.s/,G

Node | Keys Node | Keys Node | Keys
Ac b Ac | P,* Ac L
A, P A, A,

A, A, A, P

inAc

move P
toAc
yY x

A

(c) During migration

e P tuples still T 1 1

processed in A;

=0 =0 =o

(d) P migrated to C (e) P migrated to edge 2

Figure 7: Mobility of car emitting key P moving from edge 1 to edge 2. For simplicity, we only show one operator (A), replicated
on cloud C, edge 1, and edge 2. Solid arrows indicate flow of P tuples. See Section 3.6 for more details.

Data source “ping-pong”. One interesting corner case is when
a data source moves back and forth between the same two edge
nodes. Continuing our example, while Falcon is migrating the key
P from Ac to A; in Figure 7c, the source could move back to edge
1. If the Job Manager detects this during the migration from A; to
Ac, Falcon allows the migration to continue since Ac can process
tuples from all edges (via the catch-all mechanism), and the source
could continue moving between the edge nodes. On the other hand,
if the Job Manager detects the move back to edge 1 during the
migration from Ac to Az, Falcon terminates the migration. The
ping-pong scenario can lead to another challenging corner case for
in-order processing when tuples generated by the source before
disconnecting from edge 2 arrive at Ac after the first tuple produced
by the source on reconnecting to edge 1. To ensure tuples are
processed in order, Falcon buffers incoming P tuples when detecting
a ping-pong. After a short configurable duration (by default 100
ms), tuples are re-ordered and processed based on their timestamps.

3.7 Fault Tolerance

For fault tolerance, Falcon relies on a set of standard assumptions:
(1) operators are deterministic, (2) failures are not permanent, and
(3) the underlying message broker provides exactly-once processing,
is fault tolerant, and supports tuple replay and acknowledgement.
Note that failures during reconfiguration can incur stoppage in
application processing.

During steady state, all operators in a single datacenter can be
considered a single application with one broker. We use a combi-
nation of asynchronous checkpointing, deterministic tuple replay,
and tuple acknowledgment - the same strategy used by Flink [21]
and other frameworks [25, 26, 29, 36].

During reconfiguration, there are two points of failure: message
brokers and operator instances. Both these failures could occur
in Phases 1 and 5 of the live key migration protocol (Section 3.5).
Phases 2 and 4 depend only on the broker and Phases 3 and 6 can
only be affected by failure of the operator instances. To handle
message broker failures during reconfiguration, Falcon waits for
recovery and retries failed operations (via dual routing, and marker
injection). If an operator instance fails during reconfiguration, Fal-
con relies on replay: since coordination is based on markers and the

broker is fault tolerant, instances that failed after marker processing
are restarted with tuples and markers re-delivered.

3.8 Implementation

We intend to open-source Falcon upon paper publication. Falcon is
implemented in Java (approx. 50K LOC). Application operators are
implemented as Java applications running inside Docker containers.
We use Apache ActiveMQ Artemis [3] as the message broker to im-
plement our routing system, and implement Falcon’s routing rules
as Artemis filters within the message queues. The dual-routing
technique is implemented by adding diverts within the queues for
routing tuples to two locations simultaneously. These diverts use
custom filter expressions [1] to detect if the tuples belong to a spe-
cific key. To reduce latency for situations where complex routing
is not needed, operators inside the same datacenter communicate
via ZeroMQ sockets [16] and brokers are used only for communi-
cation across datacenters. To store operator state, we use our prior
open-sourced work, SessionStore [13, 37] as a geo-distributed per-
sistent key-value store. The implementation of SessionStore uses
Cassandra, a popular distributed key-value store [32].

4 EXPERIMENTAL EVALUATION

In this section, we set out to answer the following questions:

(1) How does the reconfiguration performance of our live key
migration approach compare to the full-restart, partial-pause
and hot backup approaches? (Section 4.2)

(2) What is the impact of source mobility? (Section 4.3)

(3) How do network latency and topology size affect Falcon’s re-
configuration performance? (Section 4.4)

(4) How do the application characteristics affect Falcon’s reconfig-
uration performance? (Section 4.5)

We define three metrics of reconfiguration performance. Dis-
ruption duration measures how long processing is disrupted due
to a reconfiguration event. We detect disruption when the end-
to-end tuple processing latency is greater or equal to the mean
latency during steady state, plus five times the standard deviation.
Peak latency jitter is the impact of the interruption on applica-
tion performance, defined as the difference between peak and mean
end-to-end tuple processing latency. Lastly, reconfiguration dura-
tion is defined as the time between the start of the reconfiguration

This work is under review. Please do not redistribute this drafft.

vehicle id vehicle id, srcid,

@ curr speed @

price
NQ7 Key by src id

max price item,

decision srcid, i
avg speed @ @ item id T car sgeed e 2
WIN‘ price segl
™ Key by Vehicle id ._V MAX '—H d AVG _,.:-d
I

carid,

max price item,

K
srcid, srcid, . Join by srcid carid ey
item |d hottest item, hottest item, srcid segid
price (Wi, count count .
COUNT §tellerltljd, enid QOUNI‘
fremid o WINI ™ LR-TN Key By seg id
NQ5 Key by srcid Join by srcid F"-TER carid
seller id, seller id Key by Src id Join by posité’on RGO segid i‘;fresded
item id, o srcid, wee..., SFCId, ; seg i 3
Bric avg price wser id <~ WiNG ™, serfd| T id SRC —N\ DET,
l . Key by car id Join by
Key by seller id NQ8 i carid, segid, i
NQ6 y by Q; seg id carid eesld

(O stateless Operator © Tumbling Window (Count) 17 sliding Window (Count)
i Sliding Window (Event) LR-AN

OStatefuI Operator (":-Tumbling Window (Event)

Key by seg id

Figure 8: Logical plan of TM, Nexmark Benchmark (NQ5-8), and Linear Road Benchmark (LR-TN, LR-AN) applications.

event and the emission of output tuples at the destination instance.
Depending on the reconfiguration mechanism, this duration could
include migration of application state and in-flight followed by a
replay of these tuples at the destination instance.

4.1 Experimental Setup

We evaluate Falcon on an emulated hierarchical edge-cloud de-
ployment made of two AWS datacenters: one in North California
acting as the root (i.e., cloud) and one in Montreal acting as the
child node (edge) near the data sources. The round-trip latency
between the edge datacenter and the cloud datacenter is measured
to be 80 milliseconds for all experiments except the latency experi-
ment in Figure 11. We use m5.2xlarge EC2 instances running on
a 3.1 GHz Intel Xeon Platinum 8175M with 8 threads and 32 GB
RAM. The average intra-datacenter bandwidth was 2.5 Gbps, while
inter-datacenter bandwidth was 1 Gbps.

Baselines. We compare Falcon to baselines representing full-restart
(Flink [8]), partial-pause (Trisk [15]), on-demand state transfer
(Meces [10]) and hot backups (Falcon-HB). Falcon-HB’s hot backups
mechanism is inspired by Rhino [25] since its source code is not
available and Rhino does not natively support hierarchical edge-
cloud deployment. Our Falcon-HB version uses the late-binding
routing design, avoids global coordination and state alignment
during reconfiguration, and can consume tuples from a co-located
message broker instead of downloading them from the cloud broker.
The checkpointing interval in Falcon-HB is set to 500 milliseconds
to minimize reconfiguration disruption. Finally, we evaluate against
a Falcon version that allows out-of-order tuple processing (Falcon-
OOP), to illustrate the added cost of in-order processing. Note that
we do not include Shepherd in the evaluation, as it does not support
stateful operators — the focus of Falcon’s techniques. We use the
Apache ActiveMQ Artemis message broker for all the frameworks.

Applications. We evaluate applications representing the most pop-
ular kinds of state: key-value state (TM), count-based (NQ6), and
event-based tumbling window (NQ7), and, count-based (LR-AN)
and event-based sliding window (NQ8, LR-TN) [40].

Figure 8 shows the logical plans. Since, at the time of this writing,
there is no standard benchmark for edge-based stream processing
applications, we create the traffic monitoring application TM (used
as a running example throughout the paper), along with adapting
four workloads from Nexmark [12, 44] and two workloads from
Linear road [17, 20] for an edge-cloud hierarchy. Both Nexmark
and Linear road are popular benchmarks and the workloads we

select are typically used in the evaluation of stream processing
engines [25, 26, 29, 36].

(1) Traffic Monitoring (TM). This stateful application monitors
the vehicles on a street to detect the ones violating the speed limit,
and allows fine-grained control of experimental parameters. Vehi-
cles generate tuples containing their current speed, and the stateful
MOV AVG operator computes a running average speed for each ve-
hicle. MOV AVG uses a key-value state where the key is the vehicle
ID and the value is its traffic statistics (current average speed and
number of observations). The next stateless TRIG operator triggers
an alert if the average speed of a vehicle exceeds the speed limit.
The lightweight nature of this application ensures that any impact
of reconfiguration on application performance is clearly visible.
The data production rate is 1500 tuples per second, with 10 keys
and 32 bytes of state per key.

(2) Nexmark Benchmark (NQ5-8). Query 5 (NQ5) uses an event-
based sliding window (WIN COUNT) of size 1-minute (and 1-second
slide) to count the number of bids per item from a stream of bids
generated by a data source and generates the hottest item with
maximum bids along with the bid count. NQ7 uses a similar logic to
calculate the maximum priced item by instead using an event-based
tumbling window in the WIN MAX (Windowing Max) operator.
The JOIN operator aggregates the data for the entire stream.

Query 6 (NQ6) uses a count-based tumbling window (WIN AVG)
to calculate the average selling price of the last 10 items sold by a
seller from a stream of auction bids. Finally, Query 8 (NQ8) uses two
filters in the event-based sliding windows (WIN1, WIN2 FILTER)
to respectively find the users that joined the system in the last hour
and the ones that submitted a bid in that period. The users common
in the two filtered results are determined by the JOIN operator. This
query uses long-running windows of size 1 hour with 1-second
slide that emits results every second.

For all queries, we configure the Nexmark Data Generator to
use a skewed data distribution with a ratio of hot to cold items of
100. Each data source is placed at the edge node producing 1500
tuples/second. There are 10 keys and the state size per key is 1.3KB,
1.6KB, 1KB and 82 KB for NQ5, NQ6, NQ7 and NQ8 respectively.

(3) Linear Road Benchmark (LR-TN & LR-AN). The Toll Noti-
fication (LR-TN) query calculates the toll for each segment of an
expressway. The SPD AVG (Speed Average) operator uses an event-
based sliding window (1-min size and 1-second slide) to report
the latest average speed of all cars on a segment. Similarly, CAR
COUNT operator calculates the number of cars on the segment.

This work is under review. Please do not redistribute this draft.

--- RTT ™ Flink M4 Trisk §8t Meces W Falcon-HB B@ Falcon WM Falcon-OOP

Disruption

NQ8 LR-TN LR-AN

Peak Latency
Jitter (ms) [log]

NQ8

LR-TN LR-AN

Figure 9: Reconfiguration stoppage. Dashed red line indicates
round-trip inter-datacenter latency. Trisk does not support
reconfiguration for event-based windows (marked X).

Finally, JOIN operator uses both these values to calculate the toll
for a segment (See [20] for the specific formula).

Accident Notification (LR-AN) query determines which cars are
affected when an accident occurs on a segment. ACC DET (Acci-
dent Detect) operator uses a count-based sliding window (size=10,
slide=1) to report an accident if the last 10 positions of a car are
same. CAR REG (Car Register) operator maintains a mapping of
each segment with the cars currently on it and returns all cars on
the segment. If an accident is reported on a segment, JOIN operator
returns the list of all cars on the segment.

The dataset contains 101 segments and 124,000 cars with the
state size per key (where key is segment ID) of 2.8-3.1 KB for LR-TN
and 50-70 KB for LR-AN. Reconfiguration benefits both queries:
when the number of cars on a segment increases, the processing of
the stateful operator can be moved to the edge node to reduce the
amount of data transferred to the cloud. Conversely, moving the
processing back to the cloud during low traffic avoids expensive
edge resources.

4.2 Reconfiguration Performance

We evaluate the impact of handling one reconfiguration. Initially,
all operators are deployed on the cloud node. After 60 seconds, for
each experiment, we trigger a reconfiguration that creates a new
instance of the stateful operator of the application (MOV AVG for
TM; WIN COUNT, WIN AVG, WIN MAX, WIN FILTERs for NQ5-8;
SPD AVG, CAR COUNT, CAR REG for LR queries) on the edge node
and migrates processing of 50% of the keys to this new instance.
Note that state migration in Meces and Trisk was designed for
dynamic scaling rather than for improving data processing locality.
Unlike Falcon, they do not allow the user to choose which subset
of the keys to migrate. We therefore limit our experiments to a
scenario where tuples are uniformly distributed across data sources
- allowing an advantage for the baseline systems.

Figure 9 shows the disruption duration and peak latency jitter
(99" percentile), averaged over 5 runs. Falcon achieves 1-4 orders
of magnitude reductions in both disruption duration and peak la-
tency jitter across the board. The peak latency jitter of Flink and
Trisk is in the range of tens of seconds, while Falcon-HB and Meces

----- Bandwidth (mb/s)

- 200 S moves - 200 moves S moves w
g (WELtoE2 6005 &£ i-"'\’él toE2 B2 to E3 6005
<1501 | ; €150 i f\\ 1 : €
o | i \ITT i 1 g
s 50 -4 ! :-———-ZOO%S 50 4 i i b 200%
= State migration State migration c o State migration State migration c
2 E1 to cloud cloud to E2 oo E1 to cloud cloud to E3 o

0+ 0 ®8& 0of g @

0 5 10 15 0 5 10 15 20

Time (seconds) Time (seconds)

a) Source S moves from edge E1 to E2. b) Source S moves from E1, to E2, to E3.
Figure 10: Falcon reconfiguration performance when the
source moves between 2 edges (a) and 3 edges (b). We show up
to 3 edges here for clarity of different phases. Falcon shows a
similar performance even for 32 edges where a source moves
from edge 1 to edge 32.

bring it down to hundreds of milliseconds. However, note that the
hot backup approach has the disadvantage of linearly increasing
bandwidth with the number of edges and state size (Section 4.5,
cost of hot backups). In contrast, Falcon achieves the lowest jitter
of ~45 milliseconds. Falcon’s live key migration mechanism contin-
ues tuple processing in parallel to migration. Disruption incurred
by Falcon is lower than even the round-trip network latency (80
ms, on average) because coordination is done through markers.
The only message exchange between the source and destination
incurs a single one-way message delay to guarantee in-order pro-
cessing (Sec. 3.5, phase 6), which is often overlapped by processing
at the destination. By omitting this message, Falcon-OOP achieves
a further improvement (by 14-20 ms) in peak latency jitter with no
change in disruption duration, showing that the cost of guarantee-
ing in-order processing for Falcon is low.

4.3 Support for Data Source Mobility

To evaluate the mobility of data sources, we set up a two-tier edge-
cloud deployment comprised of one root (i.e., cloud) and three child
data centers (edges). We deploy the LR-AN application using a
single car and simulate the mobility using the MEC Sandbox [7] as
a high-velocity vehicle that connects to a new edge node every few
seconds. The sandbox also sends MEC-based notifications when
the source moves from one edge node to another. When the car
moves from one edge to another, this triggers a reconfiguration of
Accident Detect (ACC DET) operator to migrate the processing of
this key accordingly. We do not include Flink, Trisk and Meces in
this experiment, as they do not support the mobility of sources.
Figure 10 illustrates the 99th percentile latency (solid green line)
and total bandwidth utilization (dashed red line) over time, as the
data source transitions from (a) edge 1 to edge 2 and (b) from edge
1 to edge 3, via edge 2. The latency is calculated at one-second
intervals. Throughout the majority of the source movement, the
tail latency stays close to the 80ms round trip time except for three
peaks. First, the peaks at the 3 seconds mark (in both Figures 10a
and 10b) are caused by the state migration from edge 1 to cloud,
which results in a latency increase of approximately 80ms. The
mobility detection latency is negligible, in the order of a few mil-
liseconds. Second, the peaks at the 12 seconds mark (Figure 10a)
and the 18 seconds mark (Figure 10b) are the cost of migrating state
from the cloud to the edge, where the data source is now located.
Recall that Falcon avoids too frequent migrations for fast-moving
sources by waiting a configurable time (5 seconds here) before

This work is under review.

=
o
N

Reconfig
Duration (s) [log]
=
2

Peak Latency
Jitter (ms) [log]

=
o
=)

100 150 200 <1 50 100 150 200
Network Latency (ms)

<1 50
Network Latency (ms)

Figure 11: Effect of round-trip latency on peak latency jitter
(left) and reconfiguration duration (right).

moving the processing from cloud to edge (Section 3.6). The third,
smaller, peak that can be seen at 9 seconds in Figure 10b is the cost
of the data source re-establishing a connection with edge 2, which
results in a slight delay in tuple emission.

Bandwidth usage momentarily peaks during state migration (at 3
seconds) due to dual routing: when moving processing from edge 1
to the cloud, tuples arriving from edge 2 to the cloud are temporarily
forwarded to edge 1 (Sec. 3.6). Processing tuples in the cloud during
the transition also incurs higher bandwidth usage temporarily: once
the migration from the cloud to the edge is complete, the bandwidth
usage drops to its normal value.

In all cases, Falcon achieves a disruption duration of 10ms and
peak latency jitter of 50-80ms, which is the same or less than the
round-trip link latency of 80ms. Both are orders of magnitude better
than what Flink, Trisk, Meces, and Falcon-HB would achieve (based
on results from Section 4.2).

We observe similar reconfiguration performance when evaluated
in the ping-pong scenario where the source moves back and forth
between two edges. We omit the results due to space constraints.

4.4 Impact of Network and Topology Size

We evaluate the impact of network latency on reconfiguration per-
formance by using Linux Traffic Control [9] to add latency between
the parent and the child nodes. The reconfiguration migrates the
processing of 50% of the keys at the MOV AVG operator of the TM
application to a new instance of the operator on the child node. We
observe that the peak latency jitter increases as round-trip network
latency grows for all frameworks except Falcon (Figure 11, left).
Flink and Trisk need more time to migrate state due to increased
bandwidth-delay product. Falcon-HB faces a similar problem when
migrating tuples arrived since the last checkpoint. Meces’s on-
demand fetch approach is a poor match for high-latency edge links,
as the increased round-trip per request starts to accumulate [23].

The reconfiguration duration of Flink, Trisk and Meces increases
with an increase in latency while it remains nearly constant for
Falcon and Falcon-HB (Figure 11, right). The dominant factor in
reconfiguration duration for Flink, Trisk and Meces is the time
taken to transfer the backlog of in-flight tuples, which increases
with latency because of the increased pause in tuple processing.
For Meces, the duration is caused by the delay in fetching the state
on demand. In Falcon (and Falcon-HB), the dominant factor is the
nearly constant time to start the new operator instance.

We next evaluate how the number of edges existing in a de-
ployment prior to the reconfiguration can affect its performance.
Initially, we have a deployment of N edges where an instance of
MOV AVG in the TM application is deployed on the cloud and N -1
edge nodes. During reconfiguration, we create an instance of this

Please do not redistribute this draft.

T RTT

()]
G810t ghles” . Flink
29103 W ——Trisk
< £ 5 —§-Meces
T8 10 - =k~ Falcon-HB
=P . + ¥ Falcon

lll 8 1I2 16
Number of edges
Figure 12: Impact of the number of edges on reconfiguration.
Reconfiguration triggered on Flink, Trisk and Meces fails for
7 or more edges due to timeouts.

””” RTT Flink —#—Trisk —4-Meces --f--Falcon-HB -¥- Falcon
e >
2810%4 2
0 —10%4 =y
® e o 2 2
B aae ettt 57
% =102 03
S0 FRNOROE R ETY DG
S ©
a 10 | IR I B B R B R R | 8
- RO LRI R
FEFEFEITVST S
ST S

State Size Per Key

Figure 13: Impact of state size on peak latency jitter (left) and
reconfiguration duration (right).

operator on the N*" edge and migrate the processing of a subset of
the keys to this instance.

Figure 12 shows that Falcon readily scales to many edges: its
reconfiguration performance is unaffected as we increase the num-
ber of edges. Conversely, adding edges leads to an exponential
increase in the peak latency jitter for Flink, Trisk and Meces, and a
linear increase for Falcon-HB. Flink, Trisk and Meces use an early-
binding design where the socket connections between all upstream
and downstream operators must be coordinated globally and re-
established after reconfiguration. Increasing edges also increases
the number of tuples that need to be replayed in Falcon-HB. Falcon
avoids the latency increase since there is no direct connection be-
tween upstream and downstream operators and there is no effect
of tuple replay on disruption. In fact, reconfiguration in Falcon in-
volves only the source and the destination instances, irrespective of
the number of operator instances in the physical plan. Since there
is no dependency on the number of pre-existing operators, peak
latency jitter is constant even if the number of edges increases.

4.5 Impact of Application Characteristics

We next explore the effects of state size per key, number of keys,
and window size on reconfiguration performance.

In Figure 13 (left), we vary the state size per key in the TM
application from 10KB to 100MB. The increase in state size per
key leads to an increase in peak latency jitter for all frameworks
except Falcon. For Flink, Trisk and Meces, the disruption due to
the state download over the network increases with the state size.
Falcon-HB achieves a lower increase by avoiding this download.
State download has no impact on Falcon as it occurs in parallel to
tuple processing.

Figure 13 (right) shows a similar pattern. Here, the increase
in state size per key leads to an increase in the reconfiguration
duration for Flink, Trisk and Meces. This is because the download
duration of the application state and the transfer duration of the
in-flight tuples increase with the increase in state size. In contrast,

This work is under review. Please do not redistribute this drafft.

ffffff RTT Flink ——Trisk —4—Meces --¥--Falcon-HB --¥--Falcon
5310 5310%
52104_$—0—0—0—4z—i 52104_/
5 a4 5
L e e] 0 PP s
Leam2d + L a1n2]
B G107 g B g 10% g S e 2
fEpd . FEjel ; . ;

100 500 1K 5K 10K 50K 10 100 1K 10K

Number of keys migrated Window Size (No. of Tuples)

Figure 14: Impact of the number of keys (left) and window
size (right) on reconfiguration performance.

Falcon has to download the application state and fewer tuples
during reconfiguration. Falcon-HB is able to achieve a low increase
rate by avoiding the state download and only needs to download
tuples that arrived since the last checkpoint.

In Figure 14 (left), we vary the number of keys migrated dur-
ing the reconfiguration of TM, using the default per-key state size
of 32 bytes. As expected, peak latency jitter for Flink, Trisk and
Falcon-HB remains nearly constant due to the modest increase
in the migrated state size. On-demand state-transfer approach of
Meces scales poorly because increasing the number of keys re-
sults in increased stalling and queuing overhead. Falcon’s peak
latency jitter is still orders of magnitude lower compared to the
other frameworks.

Finally, in Figure 14 (right), we evaluate the impact of window
size on reconfiguration performance, by varying the size of the
count-based window in the NQ6 application. We observe that an
increase in window size leads to an increase in the peak latency
jitter for all the frameworks except Falcon-HB. A larger window
implies a larger state, as we do not use incremental averaging. Even
for a window of 10,000 tuples, the peak latency jitter incurred by
Falcon is lower than even the network latency.

Cost of hot backups. Network transfers incur costs, especially
in edge deployments. To evaluate the network overhead incurred
by hot backups, we calculate the total amount of data transferred
between the cloud and edge datacenters for the duration of experi-
ments conducted in Section 4.2. Falcon-HB’s checkpointing interval
is the same as those experiments, 500 milliseconds, as this yields
the best reconfiguration performance.

The size of state transferred by Falcon-HB increases linearly
with the number of edges (Figure 15, left) and the state size per
key (Figure 15, right). The former is due to the need to replicate
state to all edges for a possible future reconfiguration, while the
latter is because of the increase in the amount of state replicated
for every checkpoint. This suggests hot backup is ill-suited for
reconfiguration in hierarchical edge networks, which are seldom
limited to a handful of nodes. In contrast, Falcon transfers the state
only once during the reconfiguration, so its transfer size remains
constant regardless of the number of edges, and increases slowly
as the state size per key grows.

5 RELATED WORK

Reconfiguration using full-restart in the cloud. Flink [21],
Spark [14], Storm [5], and Stella [48] use a full-restart reconfigura-
tion approach. The full restart interrupts the application to perform
an on-demand state checkpoint, move the checkpoint to a new

L@ 50, 2 5

S --#--Falcon-HB - 8o 10 E
® 5407 F Falcon = 9 E 3104 F

2 2304 = 2&=103 -

Z 5 ond 5%~

2420 - £5210% 5=

E 51074 EF~1011%

3 F=—=—F—7F—"F—F 3 e e S SRS
© 1 2 3 4 5

o

Number of edges S ~N 990
RERCINSAS) RN
State Size Per Key

Figure 15: Impact of the number of edges (left, linear scale)
and state size (right, log scale) on the total size of transferred
data. The hot backup approach used by Falcon-HB incurs
substantial overhead.

host, and restore the checkpoint. This reconfiguration approach
delivers state correctness but falls short of meeting stringent re-
quirements of latency peaks and system disruptions for applications
that need frequent runtime modifications. In contrast, Falcon tar-
gets edge-cloud deployments with mobile sources, where frequent
and efficient reconfiguration is needed.

Reconfiguration using partial-pause in the cloud. Partial-pause
reconfiguration [22, 28, 35, 36, 42] reduces the system disruption
time in redistributing operator workloads by pausing only the pro-
cessing of the affected operators. For instance, Megaphone [29]
splits the state into small parts and moves the state in increments.
Meces [26] fetches the state for a key only when it encounters
a tuple belonging to this key. In contrast, Rhino [25], Chronos-
tream [47], and Gloss [38] implement replicated dataflows. The
application tuples and operators (or checkpoints) are replicated to
several hosts where an operator could be assigned. This solution of-
fers robustness but is expensive, as additional resources are required
for the replicated state. Moreover, the early-binding approach used
in these systems limits them to inefficient triangular routing for
edge-cloud deployment and becomes a bottleneck during rescaling.

Stream processing for edge deployments. DART [33] uses a peer-
to-peer overlay network to distribute operators on to edge data-
centers. SpanEdge [41] provides a user-friendly programming envi-
ronment for operator placement. Both systems take a full-restart
approach for operator scaling and reconfiguration. Shepherd [39]
supports reconfiguration for stateless operators with low disruption.
The system avoids global coordination by using late binding rout-
ing. Built upon the late binding idea, our system addresses the more
challenging scenario of reconfiguration in stateful applications, as
well as providing support for source mobility.

6 CONCLUSION

We presented Falcon, a stream processing framework for live re-
configuration of stateful operators in a hierarchical edge-cloud
deployment. This means two things: (1) support for moving the
state between operator replicas; and (2) support for source mobility.
To achieve reconfiguration and source mobility support, Falcon uses
live key migration, marker-based synchronization, and emission
filters. Falcon reduces reconfiguration latency from tens of seconds
to a few milliseconds and supports a wide range of reconfiguration
operations across various kinds of application states deployed on
geo-distributed edge-cloud infrastructure.

This work is under review. Please do not redistribute this draft.

REFERENCES

(1]
(2]

[10]
(1]

[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

2023. ActiveMQ Artemis Filter Expressions. https://activemgq.apache.org/
components/artemis/documentation/latest/filter- expressions

2023. Amazon ECS clusters in Local Zones, Wavelength Zones, and AWS Out-
posts. https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-
regions-zones.html

2023. Apache ActiveMQ Artemis. https://activemq.apache.org/components/
artemis/

2023. Apache Flink. http://flink.apache.org/

2023. Apache Storm. https://storm.apache.org/

2023. Azure Stack Edge release notes. https://learn.microsoft.com/en-us/azure/
databox-online/azure-stack-edge-gpu-2202-release-notes

2023. ETSI MEC Sandbox. https://try-mec.etsi.org/

2023. Flink Github. https://github.com/apache/flink

2023. Linux Traffic Control. https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/
linux-traffic-control_configuring-and-managing-networking

2023. Meces Github. https://github.com/ATC2022No63/Meces

2023. Multi-access Edge Computing (MEC); Application mobility service
APL https://www.etsi.org/deliver/etsi_gs/MEC/001_099/021/02.02.01_60/gs_
mec021v020201p.pdf

2023. Nexmark Github. https://github.com/nexmark/nexmark

2023. Pathstore Github. https://github.com/PathStore/pathstore-all

2023. Spark Streaming. https://spark.apache.org/streaming/

2023. Trisk Github. https://github.com/sane-lab/Trisk

2023. ZeroMQ. https://zeromg.org/

2024. Linear Road Webpage. https://www.cs.brandeis.edu/~linearroad/

Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.
MillWheel: Fault-Tolerant Stream Processing at Internet Scale. In Proceedings of
the International Conference on Very Large Data Bases (VLDB).

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.
Fernandez-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Approach
to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-
of-Order Data Processing. In Proceedings of the International Conference on Very
Large Data Bases (VLDB).

Arvind Arasu, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S Maskey,
Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. 2004. Linear road: a
stream data management benchmark. In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30. 480-491.

Paris Carbone, Stephan Ewen, Gyula Fora, Seif Haridi, Stefan Richter, and Kostas
Tzoumas. 2017. State Management in Apache Flink: Consistent Stateful Dis-
tributed Stream Processing. In Proceedings of the International Conference on Very
Large Data Bases (VLDB).

Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter
Pietzuch. 2013. Integrating Scale Out and Fault Tolerance in Stream Processing
Using Operator State Management. In Proceedings of the SIGMOD international
conference on Management of Data.

Jun Lin Chen, Daniyal Liagat, Moshe Gabel, and Eyal de Lara. 2022. Starlight:
Fast Container Provisioning on the Edge and over the WAN. In Proceedings of the
USENIX Symposium on Networked Systems Design and Implementation (NSDI).
Tathagata Das, Yuan Zhong, Ion Stoica, and Scott Shenker. 2014. Adaptive Stream
Processing Using Dynamic Batch Sizing. In Proceedings of the ACM Symposium
on Cloud Computing (SoCC).

Bonaventura Del Monte, Steffen Zeuch, Tilmann Rabl, and Volker Markl. 2020.
Rhino: Efficient Management of Very Large Distributed State for Stream Process-
ing Engines. In Proceedings of the SIGMOD International Conference on Manage-
ment of Data.

Rong Gu, Han Yin, Weichang Zhong, Chunfeng Yuan, and Yihua Huang. 2022.
Meces: Latency-efficient Rescaling via Prioritized State Migration for Stateful
Distributed Stream Processing Systems. In Proceedings of the USENIX Annual
Technical Conference (USENIX ATC).

Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Claudio Sori-
ente, and Patrick Valduriez. 2012. Streamcloud: An Elastic and Scalable Data
Streaming System. IEEE Transactions on Parallel and Distributed Systems 23, 12
(2012).

Thomas Heinze, Zbigniew Jerzak, Gregor Hackenbroich, and Christof Fetzer.
2014. Latency-aware Elastic Scaling for Distributed Data Stream Processing
Systems. In Proceedings of the ACM International Conference on Distributed Event-
Based Systems.

[29

(30]

[31

[32

[33

(35]

[38

(39]

[40

[41]

[42

[43]

[44]

[45

[46

[47]

(48]

(49]

Moritz Hoffmann, Andrea Lattuada, Frank McSherry, Vasiliki Kalavri, John
Liagouris, and Timothy Roscoe. 2019. Megaphone: Latency-conscious State
Migration for Distributed Streaming Dataflows. In Proceedings of the International
Conference on Very Large Data Bases (VLDB).

Shuai Hua, Manika Kapoor, and David C Anastasiu. 2018. Vehicle Tracking and

Speed Estimation from Traffic Videos. In Proceedings of the IEEE Conference on
omputer Vision and Pattern Recognition Workshops.

Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter Heron: Stream Processing at Scale. In Proceedings of the ACM
SIGMOD International Conference on Management of Data.

Avinash Lakshman and Prashant Malik. 2010. Cassandra: a Decentralized Struc-
tured Storage System. ACM SIGOPS Operating Systems Review 44, 2 (2010).
Pinchao Liu, Dilma Da Silva, and Liting Hu. 2021. DART: A Scalable and Adaptive
Edge Stream Processing Engine. In Proceedings of the USENIX Annual Technical
Conference (USENIX ATC).

Ivan Lujic, Vincenzo De Maio, Klaus Pollhammer, Ivan Bodrozic, Josip Lasic, and
Ivona Brandic. 2021. Increasing Traffic Safety with Real-Time Edge Analytics
and 5G. In Proceedings of the International Workshop on Edge Systems, Analytics
and Networking.

Luo Mai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh, Shivaram Venkataraman,
Paolo Costa, Terry Kim, Saravanan Muthukrishnan, Vamsi Kuppa, et al. 2018. Chi:
A Scalable and Programmable Control Plane for Distributed Stream Processing
Systems. In Proceedings of the International Conference on Very Large Data Bases
(VLDB).

Yancan Mao, Yuan Huang, Runxin Tian, Xin Wang, and Richard TB Ma. 2021.
Trisk: Task-Centric Data Stream Reconfiguration. In Proceedings of the ACM
Symposium on Cloud Computing (SoCC).

Seyed Hossein Mortazavi, Mohammad Salehe, Bharath Balasubramanian, Eyal
de Lara, and Shankaranarayanan PuzhavakathNarayanan. 2020. Sessionstore: A
Session-aware Datastore for the Edge. In Proceedings of the IEEE International
Conference on Fog and Edge Computing (ICFEC).

Sumanaruban Rajadurai, Jeffrey Bosboom, Weng-Fai Wong, and Saman Amaras-
inghe. 2018. Gloss: Seamless Live Reconfiguration and Reoptimization of Stream
Programs. In Proceedings of ASPLOS.

Brian Ramprasad, Pritish Mishra, Myles Thiessen, Hongkai Chen, Alexandre
da Silva Veith, Moshe Gabel, Oana Balmau, Abelard Chow, and Eyal de Lara.
2022. Shepherd: Seamless Stream Processing on the Edge. In Proceedings of the
IEEE/ACM Symposium on Edge Computing (SEC).

Henriette Roger and Ruben Mayer. 2019. A Comprehensive Survey on Paral-
lelization and Elasticity in Stream Processing. ACM Computing Surveys (CSUR)
52, 2 (2019).

Hooman Peiro Sajjad, Ken Danniswara, Ahmad Al-Shishtawy, and Vladimir
Vlassov. 2016. Spanedge: Towards Unifying Stream Processing Over Central and
Near-the-edge Data Centers. In Proceedings of the IEEE/ACM Symposium on Edge
Computing (SEC).

Mehul A Shah, Joseph M Hellerstein, Sirish Chandrasekaran, and Michael J
Franklin. 2003. Flux: An Adaptive Partitioning Operator for Continuous Query
Systems. In Proceedings of the International Conference on Data Engineering
(ICDE).

Quoc-Cuong To, Juan Soto, and Volker Markl. 2018. A Survey of State Man-
agement in Big Data Processing Systems. In Proceedings of the International
Conference on Very Large Data Bases (VLDB).

Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. 2008. Nexmark—
a Benchmark for Queries Over Data Streams. Technical Report. Technical Report.
Technical report, OGI School of Science & Engineering.

Guozhang Wang, Lei Chen, Ayusman Dikshit, Jason Gustafson, Boyang Chen,
Matthias J Sax, John Roesler, Sophie Blee-Goldman, Bruno Cadonna, Apurva
Mehta, et al. 2021. Consistency and Completeness: Rethinking Distributed Stream
Processing in Apache Kafka. In Proceedings of the ACM SIGMOD International
Conference on Management of Data.

Junjue Wang, Zigiang Feng, Zhuo Chen, Shilpa George, Mihir Bala, Padmanabhan
Pillai, Shao-Wen Yang, and Mahadev Satyanarayanan. 2018. Bandwidth-efficient
Live Video Analytics for Drones via Edge Computing. In Proceedings of the
IEEE/ACM Symposium on Edge Computing (SEC).

Yingjun Wu and Kian-Lee Tan. 2015. ChronoStream: Elastic Stateful Stream
Computation in the Cloud. In Proceedings of the International Conference on Data
Engineering (ICDE).

Le Xu, Boyang Peng, and Indranil Gupta. 2016. Stela: Enabling Stream Process-
ing Systems to Scale-in and Scale-out On-demand. In Proceedings of the IEEE
International Conference on Cloud Engineering (IC2E).

Yifan Yu. 2016. Mobile Edge Computing Towards 5G: Vision, Recent Progress,
and Open Challenges. China Communications 13, Supplement2 (2016).

https://activemq.apache.org/components/artemis/documentation/latest/filter-expressions
https://activemq.apache.org/components/artemis/documentation/latest/filter-expressions
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-regions-zones.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-regions-zones.html
https://activemq.apache.org/components/artemis/
https://activemq.apache.org/components/artemis/
http://flink.apache.org/
https://storm.apache.org/
https://learn.microsoft.com/en-us/azure/databox-online/azure-stack-edge-gpu-2202-release-notes
https://learn.microsoft.com/en-us/azure/databox-online/azure-stack-edge-gpu-2202-release-notes
https://try-mec.etsi.org/
https://github.com/apache/flink
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/linux-traffic-control_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/linux-traffic-control_configuring-and-managing-networking
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/linux-traffic-control_configuring-and-managing-networking
https://github.com/ATC2022No63/Meces
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/021/02.02.01_60/gs_mec021v020201p.pdf
https://www.etsi.org/deliver/etsi_gs/MEC/001_099/021/02.02.01_60/gs_mec021v020201p.pdf
https://github.com/nexmark/nexmark
https://github.com/PathStore/pathstore-all
https://spark.apache.org/streaming/
https://github.com/sane-lab/Trisk
https://zeromq.org/
https://www.cs.brandeis.edu/~linearroad/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 State in Stream Processing Frameworks
	2.2 Reconfiguration in the Edge

	3 Falcon
	3.1 System Overview
	3.2 Keyed State and Windows
	3.3 Tuple Routing
	3.4 The Migrate Primitive
	3.5 The Live Key Migration Protocol
	3.6 The Source Mobility Protocol
	3.7 Fault Tolerance
	3.8 Implementation

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Reconfiguration Performance
	4.3 Support for Data Source Mobility
	4.4 Impact of Network and Topology Size
	4.5 Impact of Application Characteristics

	5 Related Work
	6 Conclusion
	References

